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29. ON THE THEORY OF PHASE TRANSITIONS

Parr I

The question of continuous phase transitions (without latent heat) have been
investigated from the general thermodynamical point of view. In doing this it
becomes clear that such transitions can take place when the symmetry of the Iattice
changes. There are two possible types of transition, namely: (1) Curie points
with a discontinuity in the specific heat, which lie on a curve in the p-T diagram,
(2) isolated points in the p-7' diagram which lie in a certain way on intersections
of curves of normal phase transitions,

UP to the present time, among all phase transitions, Curie points, and so
on, only the transition between a liquid and a gas has been fully investigated.
It is known that the liquid-gas equilibrium curve in the p-T diagram has an
end point, and that a continuous transition between liquid and gas can be
realised by going round it. As for transitions between a liquid and a crystal,
or between different crystal modifications, the question about them has not
been fully elarified. In a number of cases people talk about transitions connected
with rotations of molecules; however it is not at all clear how rotations can
lead to phase transitions, and in particular to discontinuities in the specific
heat.

One even finds strange statements that there is no essential difference at
all between liquids and crystals, and that continuous transitions between them
are possible. However, liquids differ essentially from crystals in that they are

isotropic in contrast to anisotropic or stals. Every transition from a crystal
to a liquid or to a crystal of a different symmetry is associated with the dis-
appearance or appearance of some elements of symmetry. But elements of
symmetry are either present or absent; no intermediate case is possible. And
80 _continuous transitions (in the sense that transitions between liquid and

gas are continuous) connected with changes of the symmetry of the body are
absolutely impossible.

Until recently the exact formulation of the very idea of the crystal lattice was
lacking. Only quite recently Bethe and Peierls! have stressed the role of
correlations at infinity in the orystal lattice.

Note that normal phase transitions between liquid and erystal or between
different modifications where the state of the body, particularly the energy,

JL JManpay, K Te0puE (asoBux mepexonos I, Hyprnas Ixcnepusenmanrssioti u Teopemusecsoii
Duauxy, 7, 19 (1937).

L. Landau, Zur Theorie der Phasenumwandlungen 1, Phys. Z. Sowjet. 11, 26 (1937).

JI. 4. Nlaunay, K TeoprHE GasoBHX mepexonios II, Hypras Sxenepurenmassnotu Teopemusecxoil
Dusuwu, 7, 627 (1937).

L. Landau, Zur Theorie der Phasenumwandlungen II, Phys. Z. Sowjet. 11, 545 (1937).
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changes discontinuously are not the main interest of the present investigation.
Our main interest is in such transitions where the state of the body (particu-
larly the energy) changes continuously even although the symmetry changes
discontinuously. (See below for details.) We shall call these transitions the
continuous ones. Let us emphasise once again that they are not continuous in
the sense that transitions between liquid and gas are. At every moment we
can tell that we have a body of this or that symmetry.

Usually the approach to this question is made difficult by the use of an
idealised model of the lattice in which all atoms are placed in their positions
and thermal motion is ignored.

These difficulties can be avoided if a distribution probability o(x y 2) is
used, where g(z,y,z)dzdydz determines the probability for finding an
atom in the given volume element of the body. If the body consists of different
kinds of atoms then it would be possible to introduce several functions g,
€3, - - -, which would determine the probabilities for each kind of atom. Even
in that case it would instead be possible to use only one distribution function.
For instance we can determine that function as one which gives the mean

Fie. 1.

charge density at every point of the body (multiplied by dz dy dz it would
give the charge in that volume). In the following, we shall talk simply about
the ““density”’ ¢ (x, y, 2), meaning by that some function which determines the
distribution of atoms in the body under consideration. Note that such a
method based on the function ¢ also has the advantage that it is possible in
quantum mechanics as well.

The important feature of the function ¢ is its symmetry, i.e. that group
of co-ordinate transformations with respect to which p is invariant, The same
group also determines the symmetry of the body. It is known that there are
in all 230 possible different groups of transformations, i.e. types of symmetry.
In isotropic bodies (liquids) obviously g = const.

As already mentioned we shall consider here those transitions where,
regardless of a discontinuity in the symmetry, the state of the body changes
continuously. In other words the density g changes continuously. It is easy to
see that such transitions are possible because even a very small change in
the distribution of the atoms in the lattice is enough to change its symmetry.
If for instance g is represented by the curve Fig. 1a (schematically drawn in
one dimension) and some of the maxima decrease (Figs. 1b and 1c), then the
symmetry changes as soon as the decreasing starts (the translational period
of the lattice increases).
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Lot us consider a crystal with some density g, which has a certain symmetry
(we shall talk about the totality of symmetry transformations of g, as ths
group go). At the transition point the density starts to change and becomes
@ = go + dp, where 8p is small compared with g,. dp also has some symmetry
(group 8p) which is lower than that of g, (i.e. not all elements, that is symmetry
transformations of g,, are elements of symmetry of dp; the group 8p is a
subgroup of the group g,). Then p = g, + dp has the same symmetry, becauss
the sum of two functions has the same symmetry as the less symmetric term.
We can therefore neglect the case where 8o has a higher symmetry than g,
since then g, + 8p would have the same symmetry as g, 8o that no change
in the symmetry of the body would take place.

Symmetry transformations from the group g, which do not belong to the
group dg change d¢ into some other function. It is known from group theory
that the function 8o can be broken into & sum of functions the number of
which is equal to the number of elements of the group g,, in such & way that
under every transformation of that group all these functions transform among
themselves, i.e. become linear combinations of themselves.

Matrices of these linear transformations form the so-called ‘‘representation **
of the group g,. Further, all these functions into which 8p is broken, can be
JSeparated into groups or “races”, where all functions composing them again
transformation among themselves, So we can write:

be =YY", Y
"9

where n is the number of the race and ¢ is the number of the function in the
race.
Each of these races of functions can be used as & basis for the representation
of the group. That representation is realised by the transformation matrices of
the functions of that race. It is known that there exists an expansion of 3¢,
into ¢{™ where every race consists of the smallest possible number of func-
tions (i.e. an irreducible partition, thus realising the “irreducible representa-
tion"”).

In (1) we shall suppose just such a partition. We could after all simply write
it as dg = 5 5 ¢, because the functions the functions ¢{® are not deter-

LI
mined beforehand ; in the future it will be convenient to consider the functions
¢™ somehow normalised.

Among all ¢f® there is always one function (which forms a “race” by
iteelf) which is invariant with respect to all transformations of the group gg.
In the sum g, + d¢ we shall consider this function to belong to g, so that dg
has no such function.

The thermodynamic potential @, of the body, is determined by the density g,
i.e. depends on the form of the function g. In other words @ is a functional
of p: @ = @ {p}. P depends also on the temperature 7' and the pressure p of
the body as parameters. When p and 7' are given the form of the function ¢
is determined from the condition that @ should have a minimum.
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Let us expand the thermodynamic potential @{o, + do} in the state with
density ¢ = g, + d¢ in powers of 8o {(of course this expansion is not a normal
power series; individual terms in the expansion are integral operators of de).
Saying this in another way, we have an expansion in powers of ¢{® and c{®.

It can be seen that first order terms in the expansion are zero. The potential
@ as the quantity which characterises the physical properties of the body
obviously should not change under any movements of the body, i.e. should
be invariant under all possible co-ordinate transformations. If such a trans-
formation changes g, into go and ép into d¢’, then

Do + 0o} = Pleg + d e}

From this it can be seen that if @ is considered as a function only of ég, then
& iginvariant only with respect to those transformations which do not change
g0, i.e. the transformation group g,. Since the functions g{® under transforma-
tions of this group transform among themselves we can consider only the
coefficients ¢ to change under these transformations, because the expression
for @ should be invariant with respect to transformations of these coefficients.
In particular the coefficients of the powers of the ¢{ in the expression of @
will be invariants of the relevant degree. It is known that it is impossible to
construct linear invariants from gquantities transforming as an irreducible
representation.

As to the terms of second order, they are known to separate into a sum
of groups of terms consisting only of the quantities ¢ (consequently of the
functions ™) belonging to one race.

The transition point is thus characterised by the fact that for a small change
in 7' and p, an extra term & g appears in the density g,. On one side of the tran-
gition point (which we shall eall the “upper ” side) terme of second order in the
expansion are obviously essentially positive for all 7' and p. Thus the minimum
is 8t 8 ¢ = 0 i.e. the state of the body corresponds to g = g,, that is, the body
has a higher symmetry. On the other (“lower™) side of the transition point
terms of the second order are not essentially positive and thus to the minimum
of @ oorresponds some dp different from zero, which really determines the
symmetry of the body. Consequently at the transition point itself the sum of
all terms of the second order should be zero for any fixed dg.

For that it is obviously sufficient that any group of terms of second order
belonging to one race becomes zero at the transition point. On the other hand
the 8¢ which make the sum zero are just those 8¢ which can appear at the
transition point.

After the functions g{™ belonging to one of the races have been chosen such
that the corresponding second order terms are equal to zero, then the rest
of the ¢{™ can be taken to be equal to zero. Then dg = 3 ¢f ¢ (summation

i

only over functions of one race) is just that change of the density which
makes the term of the second order vanish at the transition point, and is
consequently physically realised. Therefore in future we shall only be concerned
with that one race and shall drop the superseript (n), specifying the race.
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Because the functions g; are determined by the condition that they should
make the terms of the second order vanish at the transition point, & can
now be considered as a function only of the ¢;, and the expansion in Jg as
an expansion in ¢; where there are no terms of first order. As has been alveady
said, the terms of the second order should form an invariant (with respect to
all transitions of the group g,). In accordance with group theory such an inva-
riant (in an irreducible representation) is a positive definite quadratic form,
which, by suitable choice of the normalisation of the ¢;, can always be written
as the sum of squares. In this way terms of the second order (of the given
race) have the form:

AY . (2)

At the transition point this expression need not be zero i.e. at that point
A =0 (4 is of course a function of p and T).

In an anslogous way terms of the third, fourth, --., order are formed corre-
spondingly from invariants of the third, fourth, ..., order. Terms of the third
order can in some cases be absent. If, for instance, in a given race only one
function ¢ enters, then by acting with transformations of the group g, the
coefficient ¢ can change sign. Therefore, in that case, all invariants and con-
sequently all terms of odd orders are equal to zero.

If at a certain point (i.e. at specified p and T) 4 (p, T') should vanish, then,
in order that this point really be a point of a continuous transition, it is neces-
gary that the terms of third order are zero. Otherwise & cannot have a minimum
(as a function of ¢;) at that point, because that point would not correspond
to a stable state of the body.

Two cases are possible:

1. Terms of the third order are identically zero (there are no invarients of
third order). Transition points are determined from one condition:

LAR%. T)y=o0; (3)

besides this terms of the fourth order should be positive definite. In that case
transition points lie thus on & certain ourve, which is determined by (3). This
is the case of Curie points.
A physical state is realised and is determined by the coefficients ¢; which
correspond to the minimum of @ (at given p and T). Define
Y =nt (4)
and

==
n

Then the expansion of @ is written in the form
O =0+ Ay* + Bly)n* + .. -,

where all coefficients are also functions of p and 7.
Because the term of the second order does not depend on y; the values of y;
can be obtained by finding the minimum of B(y;). Having found these values
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and substituting them into B(y;) we get
eueo+k:u+ws.+.... (5)
where B = B(p, T) is the minimum value of B(y).
According to the above
B(p, T) > 0. (6)

Above the Curie point 4 > 0; to the minimum of & corresponds 7 = 0, j.e.
the body has the symmetry g,. At the Curie point 4 = 0, and below it 4 < 0.
From the minimisation of D, ie. from &/dn = 0, we find

A+ mh#» =0
or
A4
LI
n 2B (7)
Then
42
D=, <5
The specific heat of the body is
(32)
Ao T

Terms which vanish at the Curie point are omitted. Cy i8 the specific heat of
the body with the Symmetry g, i.e. above the Curie point. Because of (8) we
see that at the Curie point € > C,, In this way at the Curie point the heat
capacity has a discontinuity and it increases in going from a more to g less
symmetrie body (note, that one body is less symmetric than the other if its
gymmetry transformation group is a sub-group of the symmetry group of the
other),

As was pointed out at the beginning of this case the ocoefficients y; are
determined from B(yy), i.e. they depend on the form of the terms of fourth
order,

But all these terms depend also on p and T ; because of that the y: depend
on p and T too. But the quantities y; determine the symmetry of g, i.e. the
symmetry of the erystal. Because of that it may happen that at different parts
of the Curie point curve a transition takes place from a more symmetric orystal
(where 8p = 0) to less symmetrio crystals of different symmetries (i.e. where
d¢ has a different symmetry).

In that case in the phase diagram there is a point of intersection of the Curie
curve (curve 1) with the phase transition curve (curve 2, Fig.2); I is the most
symmetric phase (dg = 0); along curves 4 B and B at Curie points it goes
over into less symmetric phases IT and III, where dom # 0, dory + 0.

Symmetry groups 8em and Sgp; are sub-groups of the symmetry group of the
first phase. However they are not generally sub-groups of each other. Because
of this the difference den — 8oy cannot become zero; consequently between

.... ... ..\. .. i iﬂ.y.‘h-.r A.n l P
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phases I and IIT there should not be a Curie line, but a phase transition Jine.
At the point B all three phases are identical; along the line 4 B the phaces T
and II are identical (8p;; = 0); along BC: dog = 0.

It can further be shown, that the intersection of one Curie line with another
can happen only at & point of the type shown in Fig. 3. :. Tis erw most sym-
metric phase then the phases IT and IIT have lower symmetries ; their symmatry
groups are sub-groups of the symmetry group of the wrm.m.m H.. Phage IV has
even lower symmetry than II or ITI. Its symmetry group is simultanecusely
a subgroup of the symmetry groups of the phases IT and III.

Fig. 2. Fia. 3.

Finally, let us consider those cages where terms of fourth order in the expan-
sion of & also become zero at the transition point. For this it is necessary that
the terms of the fourth order have only one coefficient which maﬁmumm. on p
and 7', together with which they would become zero. Otherwise the 3.:55.5@
of fourth-order terms together with the condition A(p, T) = 0 would give
more than two equations with two unknowns {p and T'), which would generelly
have no solutions. For this it is required that only one invariant of the fourth
order (formed from the ¢;) exists, i.e. the terma of the fourth order are identically
equal to B(p, T) %4 for arbitrary ¢;. N

If terms of the fourth order are equal to zero, then for the stability of the
state (i.e. for @ to be a minimum) it is necessary for the term of the fifth order
to be identically zero and the term of the sizth order to be positive. Two cen-
ditions, 4 = B = 0 then determine an isolated point. That point is a ».woin
whose properties have already been investigated by the m:ﬁ.S.n T. There it
has been pointed out that A-points are the points where the Curie curve goes
over into the phase transition ourve, Here I shall only consider an ma&SomE_
intersection of the Curie curve with the phase transition curve in bodies whish
are mixtures of two substances. In that case it appears that the specific _uo.we
does not become infinite but, as in pure substances, experiences only a finite

ump.
! HWo fact that the body is a mixture does not introduce anything mmmga.p:%
new into our considerations. The symmetry of the crystal s, aa before, mmammBEmn
by the density g, and the expansion of @ in the vicinity of a point of a continuous
transition is
P=0+ An? + Byt + .. ;

+ In this earlier Paper? the quantity £ corresponds to 7.

i

s T Bk T ;mpl".'.

s Aniasl St

SRR S

S Tl




e

— S

———

s

B

200 COLLECTED PAPERS OF L. D, LANDATU

but now &;, A, B depend not only on p and T but on the concentration z of
the mixture.

Let us prove that at the transition point of the Curie line into the phase
transition line for mixtures (we shall in this case also eall such a point a A-point)
the coefficient B in the expansion of @ should be zero. And indeed from this
it will follow that the specific heat does not become infinite at that point
(see equation (8)).

Let us investigate the neighbourhood of the A-point. First we shall write
conditions for the equilibrium of two phases on the transition curve (either

kind. In particular for the mixture of two materials @ = N | (n/N), where n
and ¥ are the numbers of both kinds of particles. The chemical potentials of
each kind of particles are

20 L0 9% 5
aN oz’ on oz

(where & = n/N). The equilibrium eonditions are equality of the chemical
potentials of both phases. In our case on one side of the transition point (where
7 =0, ie. in the more symmetric phase) & = @,; on the other side @ — @,
+ 4%* + Byb T x,and z are the concentrations of both phases then the equilib-

rium conditions are 0%, ad
GEN T o
and
oD od
Dy(x,) ~ x, ma.. = ens,ma }
(1]

Substituting ¢ = Dy + An® + Byt, we find from the first condition

P, &P, o4

—_— 2
+ma

0z, oz

(04/0z, is not generally zero at the transition point and because of that it is
possible to limit ourselves to the term in %) or, expanding 8 @y/ox in a
series:

id;, 89D, 3P,
oz am, T @) o T
* P, 4
In the second condition to the same accuracy we put
0%, od,
ax dx,
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and get
oD,

dxy

D = By (z,) + (z — ).

Substituting here the expression for @y we find
ad,

0,

A7 + Byt = Do(z;) — Bo() + (z — 2,)

and expanding ¢,(X,) — Dy(X) in a series:
(= =z &,

2 2
An® + By B PP

Further substituting (¢ — z,) from equation (9), then

(x—a,) 84
2 4 — 2,
A7 + By 3 pyk
ar
- 84
km._.WamH (x wﬂev ﬂﬂl (10)

Also remember that one of the conditions for the stability of the state of
the body, i.e. the condition that @ is a minimum, is § $/d5 = 0 (in that
phase where 5 + 0). From this we get from (7):

y:|
. 2
g 2B
Substituting this into (10), we find
4 324
— (x — =, 72 =

Substituting from here (z — %) = Af(0Afox) and 3 = — 4/2 B in equation (9),
we find

290,
4
axs 84 4
a4 oz 2B
0w
or Am\mvm
F) .
B= mwe. (11)
(1]
9}

From this it is obvious that at a A-point B never becomes zero and that
always B > 0. The last statement follows from (11) because 62,/d22 > 0

OPL 7a
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acoording to the known thermodynamical inequalities for solutions, Further
the equation
a4
A(2) + (wy - 2) praial
can be written in the form A (xy) = 0 to the acoepted approximation, ie.
the phase transition pointa for the more Symmetric phase satisfy the same
equation as the Curie curve,

In this way the neighbourhood of a 4-point has thus for mixtures the form
shown in Fig. 4 (plotted along the co-ordinate axes are concentration and tem-
perature). The dotted line is the continuous transition curve, i.e. the Curie
ourve. I i the more, and IT the less symmetric phase. The line 10 goes eonti-
nuously into the line 03; the line 02 branches away from it. The line 302 is the

phase transition line; the shaded region 302 is the Tegion of separation into two
phases I and II, the concentrations of which are determined by the lines 03
and 02.

B, T)b(y) o
(it _.m. assumed that there is only one invariant of the third order) and the ex-
Pansion ig
P =%+ Ad(p, T)p + B(p, DIIn + O, T y) gt 4 ... (12)
At a continuous transition point
A=RB=0.

Consequently the continuous transition points are in this case isolated, j.e.
there is no Curie line, Therefore, such Points should in some way lie on the
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phase transition lines. Accordingly it is hecessary to investigate the character
of the phase transition line in the vicinity of such points,

In the neighbourhood of a continuous transition point of the typs under
consideration 4 and B are closs to zero (but € > 0). On the equilibrium curves
of the more and less symmetric phase their thermodynamie potentials are
equal, ie. @ = &, or

An® + BbyP +C = 0, (18)

Beasides that 2@ /27 should be zero, as it should be for all possible equilibrium
states, i.e.

(24 + 3Bby + 4Cp?) = 0. (14)

These two equations should have a common solution different from zero
(different from zero because the solution % < 0 would mean that at the tran-
sition points dp = 0, i.e. a Curie line would exist and that ag has already
been mentioned is impossible).

It is easy to see that for this it is necessary that

Bh2 =440 (15)
and

= -3 (16)

oo\u
v

Fia. 5.

It could be thought that the continuous transition points considered simply
lie on a phase transition curve like the point 0 in Fig. 5. However that is not
80, but instead we shall now show that the point 0 should lie on the intersec-
tion of several phase transition curves,

Lot us investigate points in the neighbourhood of 0 but not, lying on phase
transition curves. For them {as in every stable state) 89 /om = 0, This equation
has solutions 5 = 0 and also solutions of the quadratic equation (14).

The solution 7 = 0 corresponds to points which Tepresent the state of the
More symmetrie phase (3¢ = 0). In the second phase 5 isdetermined by equation
(14). But quadratic equations have in general two solutions. At the point
0: 4(p, T) = B(p, T) = 0; in the neighbourhood of the Ppoint 0 the equation
B(p, T) = 0 determines 3 line, On that line (14) has two solutions with opposite
Bigns

(17)
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That means that in the neighbourhood of the point 0 near to the line B = 0
(14) has solutions with different signs, almost equal to each other in absolute
value (because close to the line B = 0, B is small). On one side of the line B = 0,
B s positive; there the negative solution of (14) corresponds to the stable state,
otherwise by changing the sign of 4 it would be possible to decrease @, i.e. @
would not have a minimum. By the same reason on the other side of the line
B = 0 (where B < 0) the other solution of (14) becomes valid, Consequently
the line B(p, T) = 0 is also & phase transition line, where 7 changes sign dis-
continuously.

In this way the neighbourhood of the point 0 has the appearance shown in
Fig. 6, i.e. at the point 0 the other phase transition line ends. The phase I is
the more symmetric phase (in it 4 = 0, 4 > 0). On the phase transition line
AB, A= 0. The less symmetric phases II and IIT (where 4 < 0) have the

same symmetry (in them # differs only in sign, but this does not influence
the symmetry of g). On the phase line C0, B(p, T) = 0. At the point 0 all three
phases become identical.

Let us determine the latent heat on the curves (/0 and A4 B. For the entropy

S have s a0\ mev Amsv dy
~\er),” "\a7/),, " \3y pr AT

But in all stable states 3 $/d % = 0. Therefore

(oo
a T ﬁ.d.

Substituting (12), we find in the neighbourhood of the point 0 {i.e. for small 7):

4
S=48, 3T (18)
8y = — 0 §y/0T is the entropy of the phase I. Terms of higher orders can
be neglected because unlike 4, 24/0T does not become zero.
Let us find the latent heat on the curve 4B. On it 5 = — Bb/2¢ (see equa-
tion (18)) and the latent heat of transition from the less symmetrio to the more
symmetric phase is

4 4 T
ousaclmvuwle?.uhlllmr (19)
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Near the point 0 the quantity B is a linear function of the distance along the
curve from the point 0 (because at the point 0, B = 0). In this way on the curve
A B, near the point 0, the latent heat is proportional to the square of thedistance
from 0,

In order to find @ on the curve OC close to 0, write down the next term
in the entropy §:

oD A4 B
S=—(—) =g, - Ry Y
AE_VE Y & by (20)

Sinee on the curve C O the quantity 7 is equal in absolute value in both phazes,
then the difference in entropy between phases IT and III is 25 7® 8 BloT,
where 7 is determined from (17). The latent heat is

oB
=27 pp8
Q=2T m%vs. {21)
From (21) and (17) it can be seen that @ is proportional to (— 4)¥2, ie. pro-
portional to the distance from 0 to the power 3/2.
Finally, it can be shown that when terms of fourth order have a complex
structure new phase transition lines can appear. The neighbourhood of the
point 0 then does not look as shown in Fig. 6, but as in Fig. 7.

F1a. 7.

Phase I has the highest symmetry. Phases IT and IIT have the same symme-
try; the same applies to phases IV and V. At the point 0 all phases become
identical, that is indeed the point of continuous transition. At the point 0
two of the phase transition curves have a ecommon tangent and the third
ends. Here we have assumed that two curves of phase transitions touch at
the point 0. In the general case there may be several of them.

In part IT of this paper it will be shown that in the case of transitions betwesn
liquida (i.e. isotropic bodies) and crystals terms of the third order are not
identically zero. Therefore continuous transitions between liquids and erystels
are only possible at isolated points of the type shown in Figs. 6 and 7. In parti-
cular Curie lines are impossible.

In the whole of the preceding part of the paper we have assumed that the
symmetry properties of crystals are determined by the symmetry of the mean
density function g, But the moving charges (electrons) in the body can create

__.m .
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in the crystal a mean eurrent density j as well. Then the properties of the crystal
will depend not only on the symmetry of the density ¢ but also on the symmetry
of j. Note that .‘ j d V over the whole volume of the crystal should be equal to
zero. Otherwise that current would create a magnetic field and the crystal
would possess some magnetio energy. That energy would very rapidly increase
with an ingrease in the dimensions of the erystal -and this would be energeti-
cally disadvantageous.

In the majority of bodies j = 0. In particular j # 0 in ferromagnetic bodies,
In the latter, in addition to this, the magnetic moment is not equal to zero in
every part, ie. _. [r A §]1dV * 0 over an elementary cell. However not every
body with j + 0 is ferromagnetio, because although j + 0, _. [rAjldV can be

Z6eTO0.

If j = 0, then the symmetry properties of the crystal are determined by the
density . It is known that there exists a limit to the number (230) of possible
types of symmetry, i.e. space groups. If besides that j + 0 then the classifica-
tion of the types of symmetry follows from the properties of ¢ and j; then it
is possible for there to be more than 230 space groups.

The presence of § % 0 (crystals with j + 0 we can call magnetic) does not
introduce anything essentially new into the preceding discussion about tran-
tition points. At transition points the change in symmetry is then determined
by 8¢ and 8j. As before only the transition points discussed above are possible.

Let us concentrate for a while on transitions connected with the appearance
(or disappearance) of §, i.e. on transitions between magnetic and non-magnetic
orystals. Since on one side of these points j = 0, then 8j = j. As before we
shall consider only the continuous transition points of this type, ie. points
where 6§ = j = 0, in the neighbourhood of which (on one side) j is small.
Instead of expanding the thermodynamic potential @ in powers of d¢ we shall
now have an analogous expansion in powers of j. In view of the symmetry
of all the properties of the body in relation to the exchange of the future with
the past the potential @, in particular, cannot change when the sign of time is
reversed, When such a change is made the density ¢ does not change, but the
current j has its sign reversed. From this it follows that in the expansion of
& in powers of j all terms with odd powers of j should be identically zero. It
means that transitions conneoted with the appearance of j always belong to
the case 1, i.e. Curie points are possible which form Curie lines, and under
suitable conditions A-points also. Such are the Curie points in ferromagnetio
bodies. The discontinuities in the specific heats in chlorides of Fe, Cr, Ni at
low temperatures are apparently of the same nature, there is also a A-point
in MnO. All these materials have j + 0 below the transition point, and at
the transition point j becomes zero (above that point j remains equal to zero).

Until now we have been talking about transitions with a change in the
gymmetry of the crystal, but we have not discussed the physical nature of
such changes which take place. Atoms in a crystal usually perform small oscil-
lations about their equilibrium positions, i.e. the lattice points. In view of
their smaliness these oscillations cannot cause changes in the lattice symmetry.
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This does not apply, of course, to the jump-like transitions when the atoms start
oscillating around new equilibrium positions,

The continuous transitions with a change in the symmetry are always con-
neeted with & change in the ordering of the crystals, which follows when the
number of places in the lattice where atoms of a given kind can reside is larger
that the number of such atoms. There exists one particular distribution of the
atoms in the lattice which is energetically most favourable. This is realised
at sufficiently low temperatures. At higher temperatures the distribution of
atoms deviates from this. As an example, let us consider a crystal formed from
two kinds of atoms (binary mixture). The ideal configuration is that in which
the atoms of different kinds are placed at lattice points in a definite order one
relative to another (this is schematically shown in Fig. 8).

(©) E
) E
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. Such a crystal is said to be completely ordered. But every atom ean in prin-
ciple be found at any lattice point, i.e. there are more possible places for atome
of a given kind than there are atoms of that kind. Therefore, the crystal can
also be incompletely ordered if some atoms are in “foreign” places, i.e. places
at which, in the completely ordered crystal, should be atoms of the other
kind. The probability, i.e. the density function ¢ of finding atoms of one kind
at lattice points in the completely ordered crystal ean be represented schemat-
ically (in one dimension) by the curve in Fig. 9a, where the probability
has & sharp maxima at every second lattioe point. In the incompletely ordered
crystal there appears some probability of finding atoms of a given kind at
other (foreign) lattice points (Fig. 9b).

. u,ms.m:% the number of atoms of a given kind in the lattice residing at
: foreign® points can be equal to the number of these atoms residing at their
ﬁ.oﬁb: places. This means that the probability of finding atoms of a given
wmzm becomes equal at all lattice points (Fig. 9¢). The crystal is then called
disordered. It is easy to see that at the moment when this disorder appears
the symmetry of the crystal changes (namely: the symmetry increases).
That can be seen, for instance, in Fig. 9c; the curve ¢ has, in comparison with
curves a and b, an extra translational period equal to the distance between
two neighbouring lattice points (the curves a and b have only a period equal
to twice the distance between lattice points).

A second example is the crystal of NH,Cl. This crystal has a lattice of the
type NaCl, where at the lattice points are Cl and NH,. The NH, groups have
the form of tetrahedra and in the NH,Cl crystal they can be orientated in
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two directions. If all NH, groups are pointing in the same &Hmoﬁos the oasmb_
is completely ordered; if some of the groups NH, are m.ombaum in the opposite
direction the crystal is incompletely ordered. Finally Hm er.o numbers of NH,
groups pointing in each direction are equal the orystal is disordered. Its sym-
metry has then changed, namely: the ordered crystal has the symmetry of a
tetrahedron and the disordered .the symmetry of a cube. .
We can introduce the quantity ““degree of order”’, which would characterise
the deviation of the erystal from its ordered state; it is equal to 1 in the com-
Pletely ordered crystal, decreases as a funetion of the deviation mnn.:B nr.o o-.nrwﬂmm
state, and becomes zero in the disordered crystal. In our preceding discussions
the transition from the function ¢ to ¢ + 8¢ corresponded to the continuous
transition from the more to the less symmetric body, i.e. from the disordered
crystal to the appearance of the beginning of orderliness. In this way &g

€

(@}

(b)

Fia. 10.

just determines how close the crystal is to complete disorder; dp = 0 F.e.ro
disordered crystal. But we have seen that dp is determined by the guantities
¢; which are moreover proportional to #. Obviously 5 can be chosen as the
degree of order. In the above mentioned paper? we used as the degree of order
always the positive quantity & = #2. )

At a continuous transition (for instance at a Curie point) £ as a funetion of
T has the form as shown in Fig. 10a. At the phase transition it becomes zero
abruptly (Fig. 10b).

In the case of a binary mixture discussed above, the degree of order can be
ohosen in the following way. Let N, be the number of atoms of a given kind
residing at their places, and N, at foreign places. In a &moamaom. crystal
N, = N, The probability of finding an atom in its place mm. proportional to
N,/(Ny + Ny), and in a foreign place N,/(N; + N,). In a disordered S.%mn&
each of those fractions is equal to 1/2. Therefore the deviations of the probabi-
lities from their values in the disordered crystal are proportional to

N, 1 N,- N, Ny 1 NN,
N+ Ny 2 2B+ D)’ N+ X, 2 3, +N,)

In this way dg is proportional to the quotient (N, — N,)/(N,; + N,), which
can indeed be chosen to be 7,

In the case of transitions between magnetic and non-magnetic crystals atoms
with differently orientated magnetic moments play the role of atoms of different
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kinds. To & disordered crystal corresponds the case where the probabilities for
an atom to have differently orientated moments are equal for every atora. In
the case of the ferromagnetic state these probabilities cease to be equal, since
the erystal as a whole has a magnetic moment. Finally in the case of magretic,
but not ferromagnetic, bodies the probabilities for different orientations of
the moment for a single atom are also not equal, but in different atoms of
the lattice the opposite orientation of the moments are more probable. In that
way in this case the mean magnetic moments of different atoms have the oppo-
site directions and the crystal as a whole does not have g magnetic moment.

CoNcLUSIONS

1. The transitions between bodies of different symmetry (in particular
between a liquid and a erystal) cannot happen continuously, in the same sense
as the transition between a liquid and a gas above the critical point; at every
moment the body has this or that symmetry.

2. Besides phase transitions the only other possible transitions are those
continuous in the sense that at the transition point no abrupt change in the
state of the body occurs (in particular there is no latent heat), but the sym-
metry changes suddenly. Such transitions are inevitably followed by a jump in
the specific heat. These transitions are connected with a crystal becoming
disordered.

3. The following types of continuous transitions with a change of symmetry
are possible: (a) Curie points lying on a curve in the (p, T) diagram. These
curves can intersect each other or the phase transition line in points of the kind
shown in Figs. 2 and 3. The Curie line can g0 continuously into a the phase
transition line. The point where this happens is a A-point. At the A-point of
a pure substance the specific heat becomes infinite; if the body is a mixture
the specific heat only experiences & finite jump. (b) Isolated continuous tran-
gition points. These points lie on the intersections of several phase transition
lines (Figs. 8 and 7).

4. Continuous transitions are possible which are econnected with the appea-
rance or disappearance of the mean magnetio moments of every atom in the
crystal (in particular such is the Curie point of ferromagnetic bodies). For such
transitions case a) is appropriate.

Parr II

The impossibility of the existence of crystals with a density function which
depends only on one or two co-ordinates is proved. The question of transitions
between a liquid and a erystal is discussed and it is shown that between them
there cannot exist Curie points lying on a curve in the p-7' diagram. The question
of the nature of liquid crystals is investigated.

In part It the question of transitions connected with a ehange in the sym-

metry of the body has been disoussed from a general point of view. In this part

we shall investigate the question of the relation between different states of
matter from the same point of view.

T Referred to es I in the following.
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1. TeER IMPOSSIBILITY OF THE EXISTENCE OF CRYSTALS WITH
DENSITY ¢, WHIOH DEPENDS ON ONE 0E Two CO-ORDINATES

The density function g of a crystal (see I) is a function of all three co-ordinates
%, ¥, 2. The question arises, is the case possible where ¢ is & function of only
two, or even one, variable. A crystal with o = @ (x) could be considered as con-
sisting of atoms arranged in the form of parallel straight rows, where these
rows are all equally orientated along the z-axis, but completely randomly
placed with respect to each other. A orystal 9 = ¢(z, y) should some how consist
of parallel planes, In each of these Planes atoms are distributed in a certain
order; however the positions of these planes are undetermined.

Let us show that states of matter with density ¢ depending only on one
or two co-ordinates are impossible. We shall use a method applied by Peijerls?
to two-dimensional bodies. In partioular let us determine the fluctuations in
such a body.

Consider some deformation. Such a deformation is characterised by a dis-
placement vector u(z, y, ) with the components ;(z, y, z) at every point
%, ¥, z of the body. The energy (more specifically the free energy) of the de-
formed body is determined, as it is known, by the deformation tensor Ui

s 1 m:’.+m$
e\ aw, T o, )

The change AF in the free energy per unit volume element of the body is
known to be generally a quadratio function of all components of the tensor
;. The change in free energy of the whole body is ¥ 4 F, where ¥ is the volume
of the body.

The displacement veotor u can be expanded in plane waves

% = M W, ul =aPeln, (1)

obviously the fluctuation is

&HM%. @)

The tensor u;;, which corresponds to & certain Plane wave «{? is obvioualy
proportional to the product of components u® with components of the wave
veetor f[ufl =i(f; w. + w; f,)/2]. The quadratic function AF breaks into a
sum of terms each of them depending only on uf}) of one f-

Let us consider a body with density ¢ = ¢(x). Then it is easy to see that
the free energy of the deformation in such a body does not depend on u,, and
%g,. As & matter of fact these deformations exhibit themselves as nothing
more than g displacement along the y and z directions. But in these directions
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¢ = const, and therefore such a displacement is not connected with a change
in g, consequently neither with a change in P, Let us determine the mean value
of u{2. For this determine the part of the free energy which depends on ud.
Since 4} and 4} do not into enter AF then the part of AF we are looking

for depends only on uY), ie. on

7 i .
uh =ifud;

consequently 4 F has the form
AF = A w242,

Since the probability of fluctuational to exp (- AF . V/kT), it is easy to see
that
a% . kT

T~ E ®)

In order to find the fluctuation of the displacement uZ it is necesgary to
sum (3) over all characteristic frequencies. It is known that this summation
can be replaced by an integration. For this (3) should be multiplied by the
Debye distribution of characteristic oscillations, i.e. by ¥ df,d Iy df; and inte-
grated over the range zero to the value of 1, corresponding to the limiting Debye
frequency. In this way
kT rdf,df,df,

4 fa

2~

. @

But this integral diverges like 1 {fz when f, = 0. So in this case the fluctuation
is infinite.

But the infinite fluctuation results in the fact that the point to which a
given value of the function ¢(z) corresponds can be placed within an arbitrary
large distance; in other words the density g(z) “spreads” over the whole body.
Saying this differently: no () except p = const is possible.

If in & crystal ¢ = g(x, y), then in analogy to the above it can be shown that

mwg\mw
Zwm._ e
%Eﬁsu (®)

ﬂglﬂ I

where ¢y is a quadratic function of fz and f,, and similarly for ul,

This integral diverges logarithmically when f, = 0, fy = 0. 8o in this case
also the fluctuation is infinite and therefore such crystals cannot exist.

In the case of g = g(, g, 2) it is easy to see that

&&&
zS_u‘,
%§$?c ©

and similarly for s]w and uZ This integral is obviously finite.
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2. THE TRANSITION BETWEEN A LIQUID AND 4 CRYSTAL

Let us consider the possibility of transition from a liquid, i.e. an isotropic
body, into & erystal, the continuous transition which was disenssed in I (without
latent heat).

Let gy be the density function of the liquid. Since the liquid is isotropic
@0 = const. At the point of continuous transition ¢ becomes e = g + do,
where d¢ (and thus also g) have the symmetry of the crystal. Expand §g in
plane waves

de = Yoy ™M

Here { are the reciprocal lattice vectors of the crystal. Since ¢ is real we should

have a=a*,, (8)

where the symbol * signifies complex conjugate.
“. The thermodynamic potential g of the crystal is a functional of ¢ or, what
is the same, a functional of d¢ (see I). If for o we substitute expression (7),
then @ will be a function of the coefficients . Near the transition point ¢
can be expanded in powers of a,. Different terms of this expansion have the

translation of the origin of co-ordinates, i.e. under the change of rinto r + R,
where R is an arbitrary constant vector. But under such an exchange g, is
multiplied by ¢/"™), and the expression gy, ay, --- by ets+A+ B Thig factor is
roﬁcm— to 1 for all values of R only if f, + f; + --- = 0.

From J'f; = 0,we have for terms of the first order /=0, ie.in the expan-
sion of ¢ there are no terms of first order at all (see 2lso I). Terms of second order
should contain only products a_ 4, or according to (8) |ay|%. The expansion of p
consequently has the form

P =@+ M\m‘_a\_»

{go i8 the thermodynamic potential of the liquid , the A4, are constants which ge-
nerally depend on pressure p and temperature 7 as well as 1)- Because of the
Isotropy of the liquid we can conclude that the quantities A, depend only on
the magnitude, but not on the direction, of vector I2

Above the transition point ¢ has a minimum for all 4,,i.e. all 4, are posi-
tive. At a (continuous) transition point the second-order term should become
zero for dg different from zero (see I). From this it follows that at the transition
point one of the 4; should become zero, i.e. the curve A(f) touches the axis
of the abscissae at the transition point (Fig. 11).

Touching at two points at the same time is highly improbable therefore at
the transition point only one of the coefficients A, becomes zero. From this
it follows that, at the transition a point dp arises which corresponds to plane

0%

o)
form ff_* b
. o ... g <
It is easy to see that in the expansion of ¢ the only terms which can exist
are those for which f, + f, + --- = 0. Actuall should not_change under a
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waves with one definite wavelength, that wavelength which is determined by
those values of f which correspond to the vanishing coefficient 4. All a; corre-
sponding to other f are equal to zero, Designating that particular coefficient
4, simply by A, we have

P =+ AY gl ()

where the summation is over f which differ only in their direction.
The terms of the third order have the form

Y Bunno o, ap,
hutul

where in every term f, + f, + f, = 0. But as has just been shown, at the tran-
gition point there arise periods which all have the same absolute magnitude.
Therefore in the third-order terms also only those 11, Iy 1y, which differ only
in direction take part. The condition f, + f, + I; = 0 means therefore that the
vectors fy, f;, f, should form an equilateral triangle. In all third-order termo
these triangles have equal size (because the quantity f is determined by the
second order term) and differ only in their orientation in space. Because of
the isotropy of the liquid the ‘coefficients By, 1.1, can depend only on the size,
but not on the orientations, of these triangles. Therefore all By, in the
third-order terms are equal; their common value we shall denote by B. In this
way the term of the third order has the form

B M %, %, 4,

where the summation is over f,, f;, f,, which form equal but differently oriented
equilateral triangles, Adding this to (8) we have

g=¢o+A@T)Y |4 + B(p, )Y 0, a0, + .. .. (10}

Fra. 11. Fia. 12. Fra. 13.

We see that the third-order term has only one coefficient B(p, 7). In other
words we are dealing with the case analysed in I under case II, It means that
between liquids and solid crystals there cannot be Curie points forming a
line in the p—T diagram, but continuous transitions are possible in isolated
points which lie on intersections of ordinary phase transition lines, such as
shown in Fig. 12 or in a more complicated case in Fig. 18. In those diagrams
the point 0 is the point of continuous transition; Liq, indioates the liquid phase ;
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8ol., Sol!, Bol.,, Sol., are different solid phases. Sol., Sol! (in Fig. 12 the phases
Sol., Sol’, on the one hand and Sol!, , Sol.,, on the other hand) have, in the vieinity
of the point 0, equal symmetry and differ only in the sign of dg, i.e. they have
g equal g = g, + 8¢ (see I). In other words their lattices are such that in those
places where in Sol. the probability of finding an atom has & maximum in the
lattice Sol! it has a minimum, and vice versa. At the present time it is difficult
to say to what extent such continuous transitions exist in nature.

3. Liquip CRYSTALS

One often finds the opinion that liquid crystals represent bodies in which the
molecules are arranged in “chains”, orientated in one direction, i.e. bodies
in which ¢ is a function of one variable. However, it has been shown in
section 1, that such bodies cannot exist.

Instead, we can imagine liquid erystals as bodies in which the molecules,
or more precisely their centres of mags, are distributed completely randomly,
as in ordinary liquids. Anisotropy of the liquid crystal is caused by the equal
orientation of its molecules; for instance, if the molecules have an elongated
shape, then all of them can be arranged with their axes in one direction.

These ideas about the nature of liquid crystals can be formulated more
precisely with the help of the density function.

If the body is isotropie, then ¢ = const; however, from ¢ = const it does
not follow that the body should necessarily be isotropie. If o = conat, then
this means that all positions of an atom, more precisely its centre of mass,
in the body are equally probable. Nevertheless in this case different orienta~
tions in the body can be non-equivalent. Namely, when the position of any parti-
cular atom No. 1 is given, then the probability of different positions of a neigh-
bouring atom No. 2 is a function of their relative positions (i.e. of the veotor
714 connecting atom No.1 and 2). This probability g, can depend on the
direction of »,4. Then the body will be anisotropic regardless of the fact that
for every atom g = const. On the other hand, when this is 8o, the body will be a
liquid since in it no displacement deformation is possible. If ¢ = const then
under any deformation, without a change of volume, ¢ does not change, i.e.
striotly speaking there is no deformation.

Such bodies (p = const, g,, depends on the orientation) we can consider
a8 liquid crystals. Thus we can talk about the symmetry of liquid crystals as
the symmetry of the function g, ,. But g, , is a function of the vector 7y5; when
the length of r,; is changed without changing its direction, then 015 does
not exhibit any periodicity (when 7,, = 0, g, , obviously tends to ¢%). In other
words g,, has no translational symmetry. Therefore the possible symmetry
groups of g4, ice. of liquid orystals, are not the 230 space groups, but point
groups. Of course the number of these groups is not limited to 32 as in solid
orystals; the symmetry of liquid erystals should be classified in the same way
as the symmetry of molecules. In particular, symmetry axes of any (and not
only of the second, third, fourth and sixth) order are possible. In partioular,
liquid crystals are possible with toial axial symmetry. It is experimentally
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known that certain liquid orystals are uniaxial. It would be very interssting
toestablish whether they possess total axial symmetry or simply have axes of
higher than second order.

In principle, lignid crystals with cubic symmetry are possible. Such crystals
are impossible to distinguish from ordinary crystals in their optical properties.
It is possible that liquid He II is such a crystal. (He I does not exhibit double
refraction)s,

If all particles considered are the same then 013 obviously has a cenire of
symmetry. Actually, if on the left of atom No. 1 we have atom No, 2, then stand-
ing at the position of atom No. 2 we will have atom No. 1 on the right; in view
of the equality of these atoms we conclude that the values of 15 should be
equal for two anti-parallel but equal r,,. If the crystal consists of diffsrent
atoms then it is possible that p,, does not have a centre of symmetry,

Let us consider the possibility of continuous transitions between liquid
orystals and liquids (continuous in the sense that there is no discontinuity
in the state).

In the case of a continuous transition ¢{¥ becomes o + 34,4 in & similar
way to that in which g, became g, + 8¢ before. g{9 relates to the liquid and is
therefore isotropic; dg;, has the symmetry of the liquid erystal.

It was shown in I at & continuous transition point there appear functions 8g,
in the present case dg, ,, having certain symmetry properties which character-
ised irreducible representations of the symmetry group f?, i.e. in the present
case symmetry groups of rotations about the origin of co-ordinates. It is krown
that functions which characterise irreducible representations of the rotation
group either change their sign under inversion (reflection in the origin of co-
ordinates) or do not. In the second case the erystel which is being formed has
& centre of symmetry, in the first case it has not. The thermodynamic potential
ﬁ of the body should be invariant with respect to every possible transforma-
tion, in particular with respect to inversions. Therefore if the crystal, i.e. dg,
?pm no centre of symmetry then all terms of odd powers in the expansion of @
In powers of dg,, in particular the terms of third order, are identically equal
to zero. In other words we have the case analysed as the case I, namsly;
continuous transitions are possible as Curie points lying on a curve in the dia-
gram,

If 8¢,4 has a centre of symmetry then terms of the third order are not
generally speaking identically equal to zero. In this case we have the cass IT
of part I i.e. only isolated points of continuous transition are possible, simi-
lar to continuous transitions between a liquid and & solid crystal (section 2).

It is experimentally known that Ho IT becomes an ordinary liquid not at
o_mao points, i.e. we have the case I. This means, according to what has been
said above, that if He II is a liquid orystal it need not have a centre of sym-
metry. Since, on the other hand, He IT consists of identical atoms it should be
assumed that the absence of a centre of inversion is caused by the fact that
the atoms of He II themselves have asymmetrio electron shells. In view of a
certein strangeness of such an agsumption, the assumption itself about Ho IT
being & liguid crystal becomes somehow doubtfull,
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4. SURFAOE PHASES

The surface of separation of two isotropio, i.e. liquid, phases can generally
speaking be anisotropic. Apparently in some oases this hag been observed.
But as it has been shown in section 1, that oryatals in which g is a function of
only two coordinates are impossible, In particular the existence of two dimen-
sional “solid” crystals, i.e. crystals with anisotropioe g, are impossible, Therefore
anisotropio surface should be two dimensional “liquid* erystals, i.e. in them
the molecules, more precisely their centres of mass, are randomly distributed,
but not all of them are equally orientated (e = const, g, is anisotropio).
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30. ON THE THEORY OF SUPERCONDUCTIVITY

In this paper it is shown that at average values of the magnetic field differens,
from zero a superconductor must break up not into two regions, viz. a super-

ducting and a non-sup duoting one, but into a large number of alternating
superconduocting and non-superconducting layers. This ocircumstance providee
an explanation for the exist of Peierls’ intermediate state.

1. THB INTERMEDIATE STATE

Rutgers and Gorter! have shown that a number of the properties of super-
conductors may be explained by supposing that the superconducting and
non-superconducting states are two phases, the superconducting phase being
characterised by the fact that a magnetio field does not penetrate it, i.e. its
magnetic permeability 4 = 0. If a superconductor is Placed in a magnetic

8

Q a

E3

Fia. 1.

field, then on increasing this field the relation between the induction B and
the magnetic field A is illustrated by the curve in Fig.1. While the metal is
superconducting B = 0; when the magnetic field reaches a ecritical value,
which we shall denote by A, the body goes over to the non-superconducting
phase. B then increases with A according to the formula B = H (4 is practi-
cally equal to 1). Experiment shows that the section ab of the curve shown
also corresponds to a certain actually realisable state of the body. Thus, a
superconducting sphere placed in a magnetic field does not divide into two
parts—a superconducting end a non-superconducting one—but a uniform
magnetic field, which is not, however, equal to the external field, appears
within it. With increase in the latter the field within the sphere also incresses,
approaching the external one. The state corresponding to the indicated section
of the B-H curve was analysed by Peierls? and called “*intermediate ”’ by him.
I I. Nangay, K reopmun CHEPXUPOBONEMOCTE, HlypHas Sxcnepurenmasonot u Teopemuvsexoii
Dususu, 7, 371 (1937).
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